Multiferroics – Review of Classification

 $H\Psi(\mathbf{r}, \mathbf{r})$

(and where to look for a room temperature multiferroic with large, robust and coupled M and P)

 $H\Psi(\mathbf{r}, \mathbf{r})$

.....

Nicola Spaldin Materials Theory Department of Materials, ETH Zürich

MATERIALS THEORY

How to combine M and P?

either

1) use an alternative mechanism for P

 $H\Psi(\mathbf{r},t)$

or

2) use an alternative mechanism for M

Or play tricks to tip the energy balance in the Second-Order-Jahn-Teller effect

HU(r 1

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Outline

<u>Mechanisms for ferroelectricity that are compatible with magnetism</u> Tricking SOJT Unconventional mechanisms for ferroelectricity Non-transition-metal magnets

 $= H\Psi(\mathbf{r}, t)$

Tricking perturbation theory

 $H\Psi(\mathbf{r},t)$

Perovskites have many possible instabilities from the ideal cubic phase

 $H\Psi(\mathbf{r}, t$

Unless the ions happen to pack exactly, rotations will occur Can disabling one instability favor another? Plan: turn off tiltings to see if non-*d*⁰ transition metals off-center!

MATERIALS THEORY

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

How can we disable tiltings?

 $= H\Psi(\mathbf{r}, t)$

Need to increase lattice constant, e.g. with strain or chemical pressure

An example: BaMnO₃

 $H\Psi(\mathbf{r},t)$

Ghosez, Bousquet et al.: $CaMnO_3$ shows a tendency to ferroelectricity at *negative pressure* and under strain

 $H\Psi(\mathbf{r},t)$

Perovskite BaMnO₃:

Cubic phase: strongly unstable (200i cm⁻¹) polar zone center phonon Structural optimization $\longrightarrow Amm2$ structure, P=12.8 μ C/cm²

Z*_{Mn} = 9 G-type AFM

J. Rondinelli, A. Eidelson and N.A. Spaldin, Non-*d*⁰ Mn-driven ferroelectricity in BaMnO3, PRB **79**, 205119 (2009)

Recently synthesized by Tokura et al. and shows predicted properties

An example: BaMnO₃

More generally, pushing materials close to or beyond their region of stability induces interesting behavior!

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

Outline

Mechanisms for ferroelectricity that are compatible with magnetism Tricking SOJT Unconventional mechanisms for ferroelectricity Non-transition-metal magnets

 $\hat{H}\Psi(\mathbf{r},t)$

 $= H\Psi(\mathbf{r}, t)$

Interesting new/ongoing directions (blatant one-sided view) Novel behavior at interfaces (phase boundaries/domain walls) Applications in high-energy physics and cosmology

REMINDER – START CHART ON BLACKBOARD

 $H\Psi(\mathbf{r},t)$

MATERIALS THEORY

Zoology of multiferroics with unconventional ferroelectricity Geometric ferroelectricity Lone pair active e.g. BaNiF₄ e.g. BiMnO₃, BiFeO₃ C. Ederer and N.A. Spaldin, Electric-field switchable magnets: The case of $BaNiF_4$, PRB 74, 020401(R) (2006) Fe²⁺ Fe³⁺ Upper layer Magnetically driven Charge ordered Lower layer e.g. LuFe₂O₄ e.g. Cr_2BeO_4 N. Ikeda et al., Ferroelectricity from iron R. E. Newnham et al., Magnetoferroelectricity valence ordering in the charge-frustrated *in Cr*₂*BeO*₄, J. Appl. Phys. **49**, 6088 (1978) system LuFe₂O₄, Nature 436, 1136 (2005)

 $\hat{H}\Psi(\mathbf{r},t)$

MATERIALS THEORY

Magnetically-driven (I) Spiral magnets

 $H\Psi(\mathbf{r},t)$

e.g. chromium chrysoberyl

R. E. Newnham et al., *Magnetoferroelectricity* in Cr_2BeO_4 , J. Appl. Phys. 49, 6088 (1979)

magnetic structure at 4.5K is a cycloidal spiral without an inversion center spontaneous polarization around 1000 times smaller than in conventional ferroelectrics P

 $\hat{H}\Psi(\mathbf{r},t)$

"Magnetoferroelectrics might be termed the ultimate impropriety"

Recently rediscovered in TbMnO₃

T. Kimura et al., *Magnetic control of ferroelectric polarization*, Nature **426**, 55 (2004)

MATERIALS THEORY

Magnetically-driven II: Superexchange e.g. HoMnO₃

 $= H\Psi(\mathbf{r}, t)$

 $\hat{H}\Psi(\mathbf{r},t)$

S. Picozzi et al., *Dual nature of improper ferroelectricity in a magnetoelectric multiferroic*, Phys. Rev. Lett. **99**, 227201 (2007)

e.g. $LuFe_2O_4$

Charge-ordered multiferroics

MATERIALS THEORY

N. Ikeda et al., Ferroelectricity from iron valence ordering in the charge-frustrated system $LuFe_2O_4$, Nature 436, 1136 (2005)

 $\partial \Psi({f r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Intriguing open question:

Is magnetite below the Verwey transition a charge-ordered ferroelectric?

Fe²⁺ Fe³⁺

Upper layer () Lower layer ()

Q=(1/3 1/3)

 $H\Psi(\mathbf{r},t)$

J. van den Brink and D. Khomskii, *Multiferroicity due to charge ordering,* arXiv:0803.2964

Geometric ferroelectrics

 $H\Psi(\mathbf{r},t)$

Tiltings in 3-dimensionally connected structures are non-polar

 $\hat{H}\Psi(\mathbf{r},t)$

BUT 2-D connectivities can have polar tilt modes!

MATERIALS THEORY

Geometric ferroelectrics: BaNiF₄

 $H\Psi(\mathbf{r},t)$

reference structure

polar ground state

 $\hat{H}\Psi(\mathbf{r},t)$

Also YMnO₃ although IMPROPER Z*s?

C. Ederer and N.A. Spaldin, Orgin of ferroelectricity in the multiferroic barium fluorides $BaMF_4$: A first principles study, Phys Rev B **74**, 024102 (2006)

MATERIALS THEORY

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Lone-pair active ferroelectrics

 $= H\Psi(\mathbf{r}, t)$

Exploit two different chemistries

MATERIALS THEORY

Lone-pair active multiferroics: BiFeO₃

 $H\Psi(\mathbf{r}_{...})$

 $H\Psi(\mathbf{r})$

Idea:

Ferroelectricity from the "stereochemically active lone pair" on Bi^{3+} (cf ammonia, NH_3) Magnetism from a 3d transition metal (Fe³⁺)

Find:

Calculate and measure P = 90 μ C/cm² (huge!)

*Epitaxial BiFeO*₃ *multiferroic thin film heterostructures*, Wang, Spaldin, Ramesh et al., Science 299, 1719 (2003)

BUT: *anti*-ferromagnetic alignment of Fe³⁺ ions

How to introduce a net magnetization?

 $H\Psi(\mathbf{r},t)$

Magnetic moments in insulating oxides usually anti-align

 $\hat{H}\Psi(\mathbf{r},t)$

SO...

try ferr *i* magnetic ferroelectrics

Ferr *i* magnetic ferroelectrics?

Materials Choice:

Double perovskites

Lone pair-active Bi³⁺ on the A-site

Two different *3d* transition-metal cations on B-site:

 $H\Psi(\mathbf{r},t)$

e.g. $Fe^{3+}(d^5)$ and $Cr^{3+}(d^3)$

 Mn^{4+} (*d*³) and Ni²⁺ (*d*⁸)

Results (Theory and Experiment):

often obtain a ferroelectric polarization (competing rotational instabilities) reports of ferr*i*magnetic moments BUT best T_c s around 100K

P. Baettig and N.A. Spaldin, *Ab initio prediction of a multiferroic with large polarization and magnetization*, APL **86**, 012505 (2005).

 $\hat{H}\Psi(\mathbf{r},t)$

MATERIALS THEORY

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Outline

Mechanisms for ferroelectricity that are compatible with magnetism Tricking SOJT Unconventional mechanisms for ferroelectricity Non-transition-metal magnets

 $= H\Psi(\mathbf{r}, t)$

<u>Interesting new/ongoing directions (blatant one-sided view)</u> Novel behavior at interfaces (phase boundaries/domain walls) Applications in high-energy physics and cosmology

MATERIALS THEORY

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Exploit two different chemistries

 $= H\Psi(\mathbf{r}, t)$

MATERIALS THEORY

Summary of our discussions

 $= H\Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$