

B. Experimental aspects

More elegant ways to apply high-pressure ...

- 1. Diamond anvil cells
- 2. Large volume cells
- 3. Feasable \Leftrightarrow unfeasable

MPMS cell specifications	Hydrostatic		Uniaxial	High pressure		
	MPMS	MPMS	MPMS	PPMS	PPMS	MPMS
Model	LPC-15	MLPC-15	XPC-5	HPC-20	HPC-30	HMD-13
Pressurization system	Hydro	ostatic	Uniaxial	High p	pressure	
Maximum applied pressure	1.25 GPa	1.5 GPa	500 MPa	2.0 GPa	3.0 GPa	1.3 GPa
Maximum sample pressure © 7K	1 GPa	1.2 GPa	400 MPa	1.6 GPa	2.4 GPa	1.0 GPa

C. Illustrations 1

Effect of high-pressure on ferroic oxides (or ... Understanding individual ferroic orders before looking at multiferroics)

- Octahedra tilts (ferroelasticity) 1.
- Cation displacements (ferroelectricity) 2.
- 3. Jahn-Teller distortion
- 4. General rules

				The hig	gh-pressure phase
I. A. Kornev, L. Bellaid	he, P. Bouvier, P Coulomb forces Steric effect	E. Janolin, B. Dkhil, ar	nd J. Kreisel, Phys. Rev. Le <u>Non-</u> Coulomb Forces ? Overiap J Ti 3d & O 2s	tt. 95 (2005)	$\begin{array}{c} 0.04 \\ s \\ 0.00 \\ -0.04 \\ -0.08 \\ -0.12 \\ -0.GGA \\ -0.12 \\ -0.GGA \\ -0.12 \\ -0.06 \\ -0.$
	Coulomb forces Steric effect	cubic	Tilts « win » against ferroelectricity		Pressure tunes competition between instabilties !
Ferroelectricity « wins »		Ferroelectricity gone		Tilt « wins »	

		: Effect of pressure	
Octahedra tilts		 7 Increase (2+, 4+) → Constant ▲ Decrease (3+, 3+) 	More complex than effect of T Pressure can tune competition
Cation displacements	•	→	tilt ⇔ cation displ. Watch out for tilts !
Jahn-Teller		→ •••••	Rules in case of co-existence of instabilities ?!

Pressure-dependent single crystal diffraction on BiFeO₃

<u>P= 0.4 GPa</u> Expected R3c, single domain

<u>P= 5 GPa</u> Orthorhombic, tilts, polar ?

<u>P= 6.7 Gpa</u> Disappearance of 2 domains (changes in magnetic structure ?)

<u>P= 8 GPa</u> Orthorhombic, tilts, polar ?

<u>P= 10 GPa</u> Orthorh. Pnma tilts , non polar

Presence / change of domains are instructive, but complicate the analysis !

	Some interesting directions	
Uniaxial pressure	PRL 107, 067203 (2011) PHYSICAL REVIEW LETTERS week ending 5 AUGUST 201 Giant Effect of Uniaxial Pressure on Magnetic Domain Populations in Multiferroic Bismuth Ferrite M. Ramazanoglu, ¹ W. Ratcliff II, ² H. T. Yi, ¹ A. A. Sirenko, ³ SW. Cheong, ¹ and V. Kiryukhin ¹	1
High-pressure synthesis	APPLIED PHYSICS LETTERS 90, 112909 (2007) High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe _{1/2} Cr _{1/2})O ₃ Matthew R. Suchomel, Chris I. Thomas, Mathieu Allix, Matthew J. Rosseinsky, ^{a)} and Andrew M. Fogg Department of Chemistry, The University of Liverpool, Liverpool L69 7ZD, United Kingdom Michael F. Thomas Department of Physics, The University of Liverpool, Liverpool L69 7ZE, United Kingdom	
Pressure on films	APPLIED PHYSICS LETTERS VOLUME 80, NUMBER 13 1 APRIL 2002 Magnetic behavior of epitaxial SrRuO ₃ thin films under pressure up to 23 GPa F. Le Marrec. ⁹¹ A. Demuer. ⁹¹ D. Jaccard, and JM. Triscone DPMC. University of Ceneva. 24 qual Ernest Ansermet. 1211 Ceneva 4. Switzerland M. K. Lee and C. B. Eom Department of Materials Science and Engineering. University of Wisconsin-Madison, 1500 Engineering Dress. Wisconsin 3706	

