

	How many vibrational modes do exist ?
\rightarrow Degrees of freedom (DF)	
• every atom:	3 degrees of freedom (x, y, z)
• crystal/molecule:	3N degrees of freedom (N: atoms in the unit cell/of a molecule)
• among those 3 <i>N</i> :	3 DF for a translation 3 DF for a rotation (2 for a linear molecule) The remaining: vibrational DF (vibrational modes) \rightarrow 3N - 6 for non-linear molecules \rightarrow 3N - 5 for linear molecules \rightarrow 3N - 3 for crystals (no free rotation !)

B. Illustrations 1

B.1 Raman scattering of non-oxide materials

D. Illustrations 3

Raman scattering of multiferroic oxides

- 1. Thin films & Phase Transitions
- 2. Hetero-structures
- 3. Spin phonon-coupling
- 4. Electromagnons

Simultaneous use of Raman spectroscopie & synchrotron radiation

Now at almost all synchrotrons sources

3 beamlines @ ESRF

+ mobile spectrometers

See proceedings of the 2008 & 2011 international workshops:

"Workshop on Simultaneous studies of Raman spectroscopy with Syncrotron X-ray Absorption, Scattering and Diffraction"

