♀大阪大學

How to find and synthesize new multiferroics showing strong magnetoelectric coupling

Tsuyoshi Kimura Division of Materials Physics, Graduate School of Engineering Science Osaka University

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- Single crystal growth
- · Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO3
 - · Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

from web site of 2001 American Physical Society March meeting @ Seattle

Session C21. DMP: Multiferroics II.

Monday morning, 11:00, 12 March 2001, Room 604, Washington State Convention Center

C21.001 Materials being simultaneously ferroelectric, ferromagnetic, ferrotoroidic and ferroelastic Hans Schmid (University of Geneva, CH-1211 Geneva 4, Switzerland)

C21.002 Magnetism and ferroelectricity; why do they so seldom coexist? Daniel Khomskii (Groningen University, The Netherlands)

C21.003 Biferroic (ferroelectric-ferroelastic) Characteristics of Oriented Piezoelectric Crystals Dwight Viehland (Dept. of the Navy)

C21.004 Study of stress induced polarization switching in ferroelectrics using 2-D simulation Rajeev Ahluwalia, Wenwu Cao (Pennsylvania State University)

C21.005 Piezoelectric characterization of Ferrite/Ferroelectric magnetoelectric composite system. Srinivas Kuchipudi, Prasad Goduru, S.V Suryanarayana (Osmania University, Hyderabad-7, INDIA)

C21.006 Prediction of coupling magnetoelectric effect in ferromagnetic rare-earth-iron alloys Ce-Wen Nan (Tsinghua University, Beijing 100084, China)

C21.007 Why are there so few magnetic ferroelectrics? Nicola Hill (University of California at Santa Barbara)

C21.008 A Thermodynamic Theory for a Multiferroic Avadh Saxena (Los Alamos National Laboratory), Pradeep Kumar (University of Florida)

Symmetry operations

There are 4 kinds of geometric symmetry operations.

Mirror & Inversion transformations are accompanied

by a handedness change, while rotation & translation are not.

Stereographic projections

To visualize point groups, we make use of stereographic projections. -> Easy way of representing 3D objects in 2D Ν 1. An object located at the center of sphere 2. Any point of interest is then projected to the surface. Sphere 3. If the point ends in the northern hemisphere, then connecting it to the South Pole. Equatorial/ Х 4. Where this line intersects the equatorial plane plane is the point on the stereographic projection. ¢₫€ 5. Closed (open) circles identify points originating from the northern (southern) hemispheres. examples Z₃ ⊙-Z $m \perp Z_2$ $m \perp Z_3$ S ₹Z₁ 0

32 point groups illustrated by stereograms

Transformation operators for symmetry elements

~

The 14 symmetry elements generate the 32 point group

	[1 0 0]		
Identity operator	1 0 1 0		(0, 1, 0)
		Threefold rotation (3)	3//[111] 0 0 1
	$(-1 \ 0 \ 0)$	parallel to [111]	
Inversion center	1 0 -1 0		
	0 0 -1		(1/2 -√3/2 0)
		Threefold inversion axis (3)	3 // Z ₃ \3/2 1/2 0
Twofold rotation (2)	$2/7$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$	parallel to Z_3	$\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$
norallel to Z	2//21 0 -1 0		(0 -1 0)
parallel to Z_1		Threefold inversion axis $(\bar{3})$	3 // [111] 0 0 -1
	(-1 0 0)	parallel to [111] in cubic crystals	(-1 0 0)
Twofold rotation (2)	2 // Z ₂ 0 1 0		$(0 \ 1 \ 0)$
parallel to Z_2	(0 0 -1)	Fourfold rotation (4)	4 // Z ₃ -1 0 0
	-1 0 0	parallel to Z_3	
Mirror (m)	$m \perp Z_1 \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$		(0, -1, 0)
perpendicular to Z_1	(0 0 1)	Fourfold inversion (4)	$\bar{4}//Z_{2}$ 1 0 0
	$(1 \ 0 \ 0)$	parallel to Z_3	0 0 -1
Mirror (m)	$m \perp Z_2 = \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}$		
perpendicular to Z_2	001)	Sixfold rotation (6)	6//7
		parallel to Z	
Mirror (<i>m</i>)	$m \perp Z_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	P ==========3	
perpendicular to Z ₃			$(-1/2 - \sqrt{3}/2 0)$
		Sixfold inversion (6)	6// Z ₃ \3/2 -1/2 U
Threefold rotation (3)	$-1/2 \sqrt{3/2} 0$ 3//7. $\sqrt{3/2} 1/2 0$	parallel to Z ₃	
parallel to Z_2			
,			

Minimum symmetry elements for the 32 point groups

nt group	Symmetry elements
1	1
1	1
2	$\hat{2} \parallel Z_{2}$
m	$m \perp Z_2$
2/m	$2 \parallel Z_2, m \perp Z_2$
222	$2 Z_1, 2 Z_2$
mm2	$m \perp Z_1, m \perp Z_2$
mmm	$m \perp Z_1, m \perp Z_2, m \perp Z_3$
3	3 Z3
3	3 Z
32	$3 \ Z_3, 2 \ Z_1$
3m	$3 \parallel Z_{3}, m \perp Z_{1}$
3.00	$\bar{3} \parallel Z_2 \mid m \mid Z_1$
4 elemente se force	4 Z
ā	4 Z1
4/m	$4 \parallel Z_3, m \perp Z_3$
422	$4 \parallel Z_2, 2 \parallel Z_1$
4mm	$4 \ Z_3, m \perp Z_1$
42m	$\bar{4} \parallel Z_2 + 2 \parallel Z_1$
4/mmm	$4 \ Z_3, m \perp Z_3, m \perp Z_1$
6	6 Z1
te seleis a c <mark>o</mark>	ē∥Z₁
6/m	$6 \parallel Z_1 \mid m \parallel Z_2$
622	$6 \ Z_1, 2 \ Z_1$
6mm	$6 \ Z_3, m \perp Z_1$
6m2	$\tilde{6} \parallel Z_3, m \perp Z_1$
6/mmm	$6 \parallel Z_1, m \perp Z_3, m \perp Z_1$
23	$2 \ Z_1, 3 \ [111]$
<i>m</i> 3	$m \perp Z_1, 3 \parallel [111]$
432	$4 \ Z_3, 3 \ [111]$
43 <i>m</i>	$\bar{4} \parallel Z_3, 3 \parallel [111]$
m3m	$m \perp Z_1, 3 \parallel [111], m \perp [110]$

Tensors and physical properties

We introduce the tensor description of physical properties relating symmetry to physical properties.

Tensors are defined by the way in which they transform from one coordinate system to another.

Measured quantities such as STRESS & STRAIN can be represented by tensors.

Tensors are useful in describing anisotropy of physical properties.

Polar tensors & Axial tensors

Their transformation laws are slightly different.

Polar tensors

For a polar tensor, the general transformation law for a tensor of rank N is

$$T'_{ijk}... = a_{il}a_{jm}a_{kn}...T_{lmn}...,$$

$$T'_{ijk}...; \text{ tensor component in new axial system,}$$

$$T'_{ijk}...; \text{ direction cosines,}$$

$$T_{lmn}..., \text{ tensor component in old system}$$

$$T' = T$$

$$T_i' = a_{ij}T_j$$

$$T_{ij'} = a_{ik}a_{jl}T_{kl}$$

$$T_{ijk'} = a_{il}a_{jm}a_{kn}T_{lmn}$$

Each tensor component has *N* subscripts and there are *N* direction cosines involved in the product $a_{ij}a_{im}a_{kn}$

Meaning of the tensor rank N

---- Number of directions involved in measuring the properties

Example; (Thermal conductivity *k* relates heat flow *h* to *T*-gradient *dT/dZ*)

 $h_i = -k_{ij} (dT/dZ_j)$ (2 directions in measuring *k*)

belongs to materials

*h*_i and *dT/dZ*_j are first rank polar tensor quantities, while the thermal conductivity *k* is a second rank tensor property.

k depends on the symmetry of the material, whereas the heat flow and temperature gradient do not.

Tensor rank of other physical properties

Pyroelectricity p; a relationship between thermal & electric variables A change in temperature ΔT creates a change in electric polarization P. Polarization \rightarrow vector (= first rank tensor) Temperature \rightarrow scalar (= zero rank tensor) \downarrow $P_i = p_i \Delta T$ (pyroelectric coefficient p_i ; first rank tensor property)

Rank	Polar tensor property		
Zero	Specific heat	$\mathbf{C} = (\Delta \mathbf{Q} / \Delta \mathbf{T})$	
First	Pyroelectricity	$P_i = \frac{p_i}{\Delta T}$	
Second	Thermal expansion	x _{ij} = <mark>α_{ij}</mark> ⊿T	
Third	Piezoelectricity	$\boldsymbol{P}_{j} = \boldsymbol{d}_{jkl} \boldsymbol{x}_{kl}$	

The symmetry of any physical property of a crystal must include the symmetry elements of the point group of the crystal.

Ţ

The measurements made in symmetry-related directions will give the same property coefficient.

Pyroelectricity

The name is derived from the Greek pyr, fire, and electricity.

Pyroelectricity *p* is a first rank tensor property relating a change electric polarization *P* to a change in temperature δT . The defining relation can also be written in terms of the electric displacement *D* since no field is applied.

$$P_i = D_i = p_i \delta T [C/m^2]$$

 $p_i = a_{ij}p_j$

Symmetry limitations for pyroelectricity (rank 1)

Pyroelectricity disappears in all centrosymmetric materials.

For a first rank tensor there are 3 nonzero coefficients, p_1 , p_2 , & p_3 .

Tensor coefficients are often written in matrix form:

$$3 \times 1 \quad 3 \times 3 \quad 3 \times 1$$

(p') = (a) (p)

(p') = (p) If the direction cosine matrix (a) is a symmetry element of material.

For the inversion symmetry operation we have

which is only satisfied if all 3 pyroelectric coefficients are zero: $p_1 = p_2 = p_3 = 0$ Pyroelectricity disappears in all point groups containing inversion symmetry.

Polar axes

6mm

Axial tensor

Several properties change sign when the axial system changes from right-handed to left-handed. (e.g. pyromagnetism, Hall effect ...) Axial tensors , depends on handedness Axial tensors transform in the following manner, Axial tensors transform in the following manner, $T'_{ijk} \dots = |a|a_{il}a_{jm}a_{kn} \dots T_{lmn} \dots,$ Determinant of the direction cosines matrix |a| = +1 or -1 depending on whether or not the handedness of the axial system changes during transformation [For mirror or inversion symmetry operations, |a| = -1i.e. the sign of the tensor coefficient changes.]

A most familiar examples of tensors : vectors (the 1st rank tensors)

Polar vectors	Axial vectors
Displacement	Vector product of two polar tensors
(directed segment of length) , that is, arrow	(the directional properties of element of area, rather than arrow)
electric polarization <i>P</i> electric field <i>E</i>	magnetic moment <i>M</i> magnetic field <i>H</i>
change	Not change
Vector which breaks inversion symmetry	Vector which preserves inversion symmetry
+ Inversion center	Circular current Inversion center
Æ	Ø
	Polar vectors Displacement (directed segment of length) , that is, arrow electric polarization P electric field E change Vector which breaks inversion symmetry Inversion center

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- · Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO3
 - · Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Symmetries & tensors related to magnetic phenomena

Simple examples of magnetic point groups

Introduction of the time reversal operator increases the number of classes by adding 90 additional magnetic point groups.

Transformations of a current loop (magnetic moment) under 4 symmetry operations

In addition to rotation, mirror inversion operations, time reversal operation can be a symmetry operation in magnetically ordered materials.

Discussing magnetic symmetry

When discussing magnetic symmetry, it is necessary to distinguish the crystallographic point groups from the magnetic point groups.

2/m1': crystallographic group

(containing both the regular & time-reversed symmetry elements)

4 magnetic point groups associated with crystallographic group 2/m1'

- 2/m : containing 2, m, & 1, but not 2', m', and 1'
 2/m': containing 2, m', & 1'
 2'/m : containing 2', m, & 1'
- **2'/***m***' :** containing 2', *m*', & 1

Stereograms of the 4 magnetic point groups

Square & circular symbols represent points related by time reversal.

List of magnetic point groups

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Triclinic		Generating elements	Tetragonal			Hexagonal		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0(0)	1	4	5(3)	4 Z3	6	5(3)	6 Z ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ī	0	÷	4'	4(2)	4' Z3	6'	0	6' Z ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ī/	0(0)	1	7	4(2)	4 7 ₂	õ	0	6 Z ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	9(9)	1	Ā/	5(3)	Ā' II Za	6	5(3)	6' Z ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Monoclinic			41-	0	$m \mid Z_0 \mid A \mid \mid Z_0$	6/m	0	$m \perp Z_3, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5(5)	2 Z ₂	4/m	0	$m \perp Z_3, \forall \parallel Z_3$ $m \mid Z_2, 4' \parallel Z_2$	6' /m'	0	$m' \perp Z_3. 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	4(4)	2' Z ₂	4/m	5(3)	$m' \mid Z_2 \mid 4 \mid Z_3$	6/m'	5(3)	$m' \perp Z_3, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m	4(4)	$m \perp Z_2$	4/11	4(2)	$m' \mid Z_2 \mid 4' \mid Z_2$	6'/m	0	$m \perp Z_3, 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>m</i> ′	5(5)	$m' \perp Z_2$	4/11	3(2)	2 7. 4 7.	622	3(2)	$2 \parallel Z_1, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/m	0	$2 \parallel Z_2, m \perp Z_2$	422	2(1)	$2 \parallel Z_1, 4' \parallel Z_2$	6'22'	0	$2 \parallel Z_1, 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'/m'	0	$2' \parallel Z_2, m' \perp Z_2$	422	2(1)	2' Z1 4 Z2	62'2'	2(1)	$2' \parallel Z_1, 6 \parallel Z_3$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2/m'	5(5)	$2 \parallel Z_2, m' \perp Z_2$	42.2	2(1)	$m \mid Z_1 \mid 4 \mid Z_2$	6mm	2(1)	$m \perp Z_1.6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'/m	4(4)	$2' \parallel Z_2, m \perp Z_2$	A'mm'	2(1)	$m \perp Z_1, 4' \parallel Z_2$	6' <i>mm</i> '	0	$m \perp Z_1, 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Amin	3(2)	$m' \mid Z_1 \mid A \mid Z_2$	6m'm'	3(2)	$m' \perp Z_1, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Orthorhombic			40	2(1)	2 7, 4 7,	6m2	0	$m \perp Z_1, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222	3(3)	$2 \parallel Z_2, 2 \parallel Z_3$	42m	3(2)	$2 \ Z_1, 4 \ Z_3$ $2 \ Z_1, \tilde{A}' \ Z_2$	6'm'2	3(2)	$m' \perp Z_1, \tilde{6}' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222	2(2)	$2^{\circ} \parallel Z_2, 2 \parallel Z_3$	4 2m	2(1)	2 21,4 23	6'm2'	2(1)	$m \perp Z_1, \hat{6}' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mm2	2(2)	$m \perp Z_2, 2 \parallel Z_3$	4'2'm	2(1)	$2 \ Z_1, 4 \ Z_3$	5m/2	0	$m' \perp Z_1, \tilde{6} \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mm ²	3(3)	$m \perp Z_2, 2 \parallel Z_3$	42'm'	2(1)	$2 \ Z_1, 4 \ Z_3$	6/1000	0	$m \perp Z_1, m \perp Z_3, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m m2	2(2)	$m\perp Z_2, 2\parallel Z_3$	4/mmm	U	$m \perp Z_1, m \perp Z_3, 4 \parallel Z_3$	6' /m' mm'	0	$m \perp Z_1, m' \perp Z_3, 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mmm	0	$m \perp Z_1, m \perp Z_2, m \perp Z_3$	4'/mmm'	0	$m \perp Z_1, m \perp Z_3, 4 \parallel Z_3$	6 lmm ¹ m ¹	0	$m' \mid Z_1, m \mid Z_2, 6 \mid Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mmm	2(2)	$m \perp Z_1, m \perp Z_2, m \perp Z_3$	4/mm'm'	0	$m \perp Z_1, m \perp Z_3, 4 \parallel Z_3$	6/m/m/m/	3(2)	$m' \perp Z_1, m' \perp Z_3, 6 \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mmm	3(3)	$m \perp Z_1, m \perp Z_2, m \perp Z_3$	4/m'm'm'	3(2)	$m'\perp Z_1, m'\perp Z_3, 4\parallel Z_3$	6/m/mm	2(1)	$m \perp Z_1, m' \perp Z_3, 6 \parallel Z_3$
$\begin{array}{c} \mbox{Trigonal} \\ \hline Trigonal \\ \hline 3 \\ \hline 5 $	m mm	2(2)	$m \perp Z_1, m \perp Z_2, m \perp Z_3$	4/m mm	2(1)	$m \perp Z_1, m' \perp Z_3, 4 \parallel Z_3$	6'/mmm'	0	$m \perp Z_1, m \perp Z_3, 6' \parallel Z_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Trigonal			$4^{\prime}/m^{\prime}mm^{\prime}$	2(1)	$m \perp Z_1, m \perp Z_3, 4 \parallel Z_3$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	5(3)	3 Z ₃				Cubic		28.7 28(111)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	3 Z ₃				23	3(1)	$2 \ Z_1, 5 \ [111]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3'	5(3)	3' Z3				m3	0	$m \perp Z_1, 3 \parallel [111]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	3(2)	$2 \ Z_1, 3 \ Z_3$				<i>m</i> ′3	3(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32'	2(1)	$2' \ Z_1, 3 \ Z_3$		7.		432	3(1)	4 21. 3 [111]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>m</i>	2(1)	$m \perp Z_1, 3 \parallel Z_3$		2	Ζ.	432	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>m</i> ′	3(2)	$m' \perp Z_1, 3 \parallel Z_3$		\bullet	→ ⁻ 2	43 <i>m</i>	0	4 [[2], 3 [[111]]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3m	2(1)	$m \perp Z_1, \tilde{3} \parallel Z_3$		T		4'3m'	3(1)	4 Z ₁ , 3 [111]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bar{3}m'$	0	$m' \perp Z_1, \tilde{3} \parallel Z_3$		+7		m3m	0	$m \perp Z_1, 5 \parallel [111],$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3'm'	3(2)	$m' \perp Z_1, \bar{3}' \parallel Z_3$		~	1		0	$m \perp [110]$ $m \perp 7, 2 \parallel [111]$
m m	3'm	0	$m \mid Z_1, \tilde{3}' \mid Z_2$				m3m'	0	$m \perp \mathcal{L}_{1}, j \parallel [111],$
$ \begin{array}{c} T \\ Number of nonzero \\ magnetolectric coefficient \\ m = 1100 \\ m = 1$	19 2 30940 (1990)	201200000					-10-1	2(1)	$m \perp [110]$ $m' \perp 7, 3 \parallel [111]$
Number of nonzero $m' \pm [110]$ magnatelefetric coefficient $m'3m = 0$ $m' \pm Z_1 3 \ [11],$		T					<i>m 3m</i> ′	5(1)	$m \perp z_1, j \parallel [111],$ $m' \mid [110]$
magnetical set is coefficient $m \cdot m = 0$ $m \cdot L_{1,3} = [1,1],$	Numb	er of n	onzero				-12	0	$m' \perp 7, 3 \parallel 1111$
	magnetoe	lectric	coefficient				m sm	U	$m \perp L_1, J \parallel [111], m \mid [110]$

Simple examples

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO₃
 - Triangular lattice antiferromagnets
 - Cuprates and ferrites working at room temperature
- · Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Early history of the ME effect [from "The electrodynamics of magneto-electric media" by T. H. O'Dell]					
work					
First proposal of the ME effect on symmetry grounds.					
Suggests the impossibility of the effect on symmetry grounds.					
Suggests the effect is impossible.					
Devotes a section of his book to the reason why no ME effect can exist.					
7] Shows that the ME effect should exist in magnetic crystals.					
Shows that the AF Cr ₂ O ₃ has a magnetic symmetry which allows the effect.					
First successful observation of the effect in a Cr ₂ O ₃ crystal.					

Expansion of free energy of a material in electric (E) & magnetic (H) fields

(Q ₁₁	0	0
0	Q ₁₁	0
0	0	Q 33

Magnetoelectric matrices for the magnetic point groups

1, Ī′	$\begin{pmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{pmatrix}$	4', 4, 4'/m'	$\begin{pmatrix} Q_{11} \\ Q_{12} \\ 0 \end{pmatrix}$	$Q_{12} = -Q_{11} = 0$	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$
2, m', 2/m'	$\begin{pmatrix} Q_{11} & 0 & Q_{13} \\ 0 & Q_{22} & 0 \\ Q_{31} & 0 & Q_{33} \end{pmatrix}$	32, 3m', 3'm', 422, 4m'm', 4'2m', 4/m'm'm', 622, 6m'm', 6'm'2, 6/m'm'm'	$\begin{pmatrix} Q_{11} \\ 0 \\ 0 \end{pmatrix}$	0 Q11 0	$\begin{pmatrix} 0 \\ 0 \\ Q_{33} \end{pmatrix}$
2', m, 2'/m	$\begin{pmatrix} 0 & Q_{12} & 0 \\ Q_{21} & 0 & Q_{23} \\ 0 & Q_{32} & 0 \end{pmatrix}$	4'22, 4'mm', 42m, 42'm', 4'/m'mm'	$\begin{pmatrix} Q_{11} \\ 0 \\ 0 \end{pmatrix}$	$0 \\ -Q_{11} \\ 0$	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$
222, m'm'2, m'm'm'	$\begin{pmatrix} \mathcal{Q}_{11} & 0 & 0 \\ 0 & \mathcal{Q}_{22} & 0 \\ 0 & 0 & \mathcal{Q}_{33} \end{pmatrix}$	32', 3m, 3'm, 42'2', 4mm, 4'2'm, 4/m'mm, 62'2', 6mm, 6'm2', 6/m'mm	$\begin{pmatrix} 0\\ -Q_{12}\\ 0 \end{pmatrix}$	Q ₁₂ 0 0	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$
22'2', 2mm, m'm2', m'mm	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & Q_{23} \\ 0 & Q_{32} & 0 \end{pmatrix}$	23, m'3, 432, 4 ['] 3m', m'3m'	$\begin{pmatrix} Q_{11} \\ 0 \\ 0 \end{pmatrix}$	0 Q11 0	$\begin{pmatrix} 0\\ 0\\ Q_{11} \end{pmatrix}$
3, 3 ['] , 4, 4 ['] , 4/m ['] , 6, 6 ['] , 6/m ['] ,	$\begin{pmatrix} \mathcal{Q}_{11} & \mathcal{Q}_{12} & 0 \\ -\mathcal{Q}_{12} & \mathcal{Q}_{11} & 0 \\ 0 & 0 & \mathcal{Q}_{33} \end{pmatrix}$	Other magnetic groups	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	

Only 58 magnetic point groups are magnetoelectric.

Polarization (Magnetization) induced by Magnetic (Electric) fields is restricted to magnetic symmetry.

Example; Magnetic symmetry and ME tensor in GaFeO₃ (Remeikite)

ME_H effect in conventional magnetoelectrics

System with breaking of either I & R

System with breaking of both I & R

Important remarks by former studies

In a magnetically ordered compound, magnetic symmetry (not fundamental crystal symmetry) determines its ferroelectric property.

In noncollinear spiral spin structure,

magnetic symmetry operations are quite different from crystallographic one.

reference

Properties of Materials: Anisotropy, Symmetry, Structure by Robert E. Newnham, Oxford University Press (2005).

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO3
 - Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Single crystal growth for inorganic materials

Directional Solidification/Bridgeman Method
 Flux Method
 Czochralski growth
 Floating Zone Method
 Chemical vapor transport method

CuO+K₂Cr₂O₇

They enable growth of materials which melt congruently, and those that do not, and require a flux.

Flux: Bi₂O₃

MnWO,

Crystals collection grown by J. P. Remeika (Bell Labs.)

Importance of phase diagram to grow single crystals

"Phase Diagrams for Ceramists" American Chemical Society

Example: Phase diagram of Fe₂O₃-YFeO₃

Floating zone (FZ) method

The basic idea in float zone (FZ) crystal growth is to move a liquid zone through the material. If properly seeded, a single crystal may result.

DyVO₄

From http://people.seas.harvard.edu/~jones/es154/ lectures/lecture_2/materials/materials.html

Traveling solvent floating zone (FZ) method

An effective method to grow compounds which melt incongruently.

Growth of a high- T_c cuprate, (La,Sr)₂CuO₄

When the solid state reaction could not stabilize the formation of the focused phase,

* change the oxygen partial pressure.

Cu.O(liquid

1200

-

1400

- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO₃
 - · Cuprates and ferrites working at room temperature

1080 C

72-96 h

Crystal Growth

Cut by Diamond Whe

Grown Crysta

Feed Rod for

980 C

- · Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Classification of magnetoelectric multiferroics

Origins to induce polar structure in multiferroics

*6s² lone pair of Bi or Pb (Seshadri & Hill Chem. Mat. 2001)

*Bi*³⁺ or *Pb*²⁺ ion with two electrons on the 6s lone pair ([Xe]4f¹⁴5d¹⁰6s²) that moves away from the centrosymmetric position in its oxygen surrounding (as in PbTiO₃).

Pb(*A*,*B*)O₃ (*A*=Fe, Mn, Co...; *B*=W, Nb...) [*T*_c(FE)~300~400K *T*_N(M)~100~200K] BiFeO₃ [*T*_c(FE)~1123K *T*_N(M)~650K], BiMnO₃ [*T*_c(FE)~773K *T*_c(M)~110K]

*Geometric ferroelectrics (van Aken et al. Nature Mat. 2004)

An electric dipole moment is induced by a nonlinear coupling to nonpolar lattice distortions, such as the buckling of Y–O planes and tilts of manganese–oxygen bipyramids

Hexagonal RMnO₃ (R=Y, Ho, etc.) [T_C(FE)~900K T_N(M)~100K]

*Charge ordering (Efremov et al, Nat, Mater. 2004, Ikeda et al. Nature 2005, Tokunaga et al. Nature Mat. 2006) LuFe₂O₄, (Pr,Ca)₂Mn₂O₇

*Origins of magnetic and ferroelectric ordering are independent. (Their ferroelectric order often appears at higher temperature than magnetic one.)

*Ferroelectricity induced by magnetic order

Ferroelectricity induced by exchange striction $(\sim J S_i \cdot S_j)$

J. Phys. Soc. Japan 16 (1961) 2589

YMnO₃

domain A

domain B

Origin of Magnetoelectric Effect in Cr₂O₃

By Muneyuki DATE, Junjiro KANAMORI, and Masashi TACHIKI Department of Physics, Osaka University, Nakanoshima, Osaka

Gray and black circles represent oxygen ions in paramagnetic and magnetically ordered phases.

 $\begin{array}{l} \mathsf{Ca_3CoMnO_6}\\ \mathsf{Choi} \text{ et al. PRL 100, 047601 (2008)}\\ \mathsf{DyFeO_{3,} GdFeO_3} \end{array}$

Tokunaka et al. PRL 100, 047601 (2008) Tokunaga et al. Nat. Mat. 8, 558 (2009).

Classification of modulated spin structures

Cox, Takei, & Shirane, J. Phys. Chem. Solids 24, 405 (1963).

Former works studying the magnetoelectric coupling in systems with spiral spin structures

Control of spin helicity by magnetoelectric cooling process & its detection by polarized neutron diffraction

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Vol. 48, No. 4, April, 1980

Kiiti Siratori, Jun Akimitsu,† Eiji Kita

A Method of Controlling the Sense of the Screw Spin Structure

ZnCr₂Se₄

Considering the magnetic symmetry of a screw spin structure, it was shown that the sense of the screw spin structure can be controlled by a magnetoelectric cooling. It was confirmed experimentally in ZnCr₂Se₄ by means of a polarized neutron diffraction.

Breaking space inversion symmetry in spiral spin systems

The CW & CCW spiral structures are inverted by *I* to each other. However, these two spiral structures are not identical.

Thus, the inversion symmetry is broken by a spiral spin order.

To make system ferroelectric,

Materials design

How to produce the spiral magnetic structure

Competing magnetic interactions

An approach to exploring new magnetoelectric multiferroics

We focus on magnetic insulators with competing magnetic interactions (spin frustration) as candidates of new multiferroics.

List of spin-spiral-driven ferroelectrics

Compound	Crystal structure	Magnetic ion	Proposed spin structure	Temperatur range (K)	e Ref.
<i>R</i> MnO ₃ (<i>R</i> =Tb, etc	O (<i>mmm</i>) :.) [perovskite]	Mn ³⁺ S=2	cycloidal	<u><</u> 28	Kimura e <i>t al.</i> (2003)
Ni ₃ V ₂ O ₈	0 (<i>mmm</i>)	Ni ²⁺ S=1	cycloidal	3.9~6.3	Lawes e <i>t al.</i> (2005)
Ba,Sr) ₂ <i>M</i> ₂ Fe ₁₂ 0	R (-3m) 22 [haxaferrite]	Fe ³⁺ S=5/2	screw, L-conical (A T-conical (B>0)	^{B=0)} <u><</u> ~110	Kimura <i>et al.</i> (2005)
CuFeO ₂	R -3 <i>m</i> [delafossite	Fe ³⁺] S=5/2	collinear(B=0) screw (B>0)	<u><</u> 11	Kimura <i>et al.</i> (2005)
CoCr ₂ O ₄	C (m3m) [<mark>spinel</mark>]	Co ²⁺ Cr ³⁺ S=3/2 S=3/2	T-conical	<u>≤</u> 26	Yamasaki et al. (2006)
MnWO ₄	M (2/m) [walframite]	Mn ²⁺ S=5/2	cycloidal	7~12.5	Taniguchi e <i>t al.</i> (2006)
RbFe(MoO₄) ₂ R (-3 <i>m</i>)	Fe ³⁺ S=5/2	screw	<u>≤</u> 3.8	Kenzelmann <i>et al.</i> (2006)
LiCu ₂ O ₂	0 (<i>mmm</i>)	Cu ²⁺ S=1/2	cycloidal	<u><</u> 23	Park e <i>t al.</i> (2007)
LiCuVO ₄	O (<i>mmm</i>)	Cu ²⁺ S=1/2	cycloidal	<u><</u> 2.4	Naito e <i>t al.</i> (2007)
CuO	M (2/ <i>m</i>) [tenorite]	Cu ²⁺ S=1/2	cycloidal + screw	212~230	Kimura e <i>t al.</i> (2008)
ACrO ₂ (A=Ag,	Cu) R (-3 <i>m</i>) [delafossite]	Cr ³⁺ S=3/2	screw	<u><</u> 24	Seki <i>et al.</i> (2008)
FeVO ₄	Tri (-1)	Fe ³⁺ S=5/2	cycloidal	<u><</u> 16	Daoud-Aladine et al. (2009)
CuCl ₂	M (2/ <i>m</i>) Idistorted Cdl	Mn ²⁺ 1 S=5/2	cycloidal	<u><</u> 24	Seki <i>et al.</i> (2010)
Mn ₂ GeO ₄	O (<i>mmm</i>) [olivine]	Mn ²⁺	cycloidal	<5.5	White et al. (20

Outline of this lecture

- · Symmetry in crystals
- Magnetic symmetry
- · Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO3
 - Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Change in lattice distortion in RMnO₃ (all of them are Pbnm orthorhombic)

Complex phase diagram & variety of phases in perovskite manganites $RMnO_3$

Competing magnetic interactions in RMnO₃

Competition between FM Nearest-Neighbor & AF Next-Nearest-Neighbor interactions

Ferroelectricity induced by exchange striction ($\sim J S_i \cdot S_i$)

Ferroelectric order accompanied by spiral magnetic order in TbMnO₂

Large ME effects near the phase boundary in TbMnO₃, DyMnO₃

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- · Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites $RMnO_3$
 - Cuprates and ferrites working at room temperature
- · Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

Spin frustration often suppresses magnetic ordering temperature. Most of induced-multiferroics only operate below ~40 K.

How to obtain induced-ferreoelectrics with high- T_c ?

1. Low dimensional cuprates with Cu²⁺

Variation of superexchange interaction J in several undoped cuprates

Crystal & magnetic structures of CuO

240

Magnetoelectric Y-type hexaferrite (Ba,Sr)₂Me₂Fe₁₂O₂₂ (Me=Zn, Mg, etc.)

Spin frustration often suppresses magnetic ordering temperature. Most of induced-multiferroics only operate below ~40 K.

How to obtain induced-ferreoelectrics with high- $T_{\rm C}$?

- 1. Low dimensional cuprates with Cu²⁺
- 2. Iron oxides with hexagonal structure Refrigerator magnet (hexaferrites)

Low-Magnetic-Field Control of Electric Polarization in Y-type hexaferrites (Ba,Sr)₂Me₂Fe₁₂O₂₄

We pursue room-temperature magnetoelectrics in other types of hexaferrites.
Hexaferrite showing
1. a spiral magnetic order above room temperature
2. highly insulating electric property at room temperature

Classification of hexagonal ferrites (hexaferrites) - chemical formula -

Classification of hexagonal ferrites - Stacking sequence composed of 3 types of blocks-

 $Ba_4M_2Fe_{36}O_{60}$

U

J. Smit & H.P.J. Wijn, Ferrite (Philips' Technical Library, 1959) stacking Chem. form. C(Å) S.G. Μ BaFe₁₂O₁₉ P6₃/mmc RSR*S* 23.19 W $BaM_2Fe_{16}O_{27}$ $RS_2R^*S_2^*$ 32.84 P6₃/mmc Υ $Ba_2M_2Fe_{12}O_{22}$ $(TS)_3$ 43.56 R-3/m RSTSR*S*T*S* Ζ Ba₃*M*₂Fe₂₄O₄₁ P6₃/mmc 52.3 Х Ba₂M₂Fe₂₈O₄₆ $(RSR^{*}S_{2})_{3}$ 84.11 R-3/m

 $(RSR^*S^*TS^*)_3$

The prime(') and asterisk (*) symbols indicates that the corresponding block is rotated 120° or 180° about the c axis, respectively.

113

R-3/m

Crystal structures of 6 main types of hexaferrites

Appearance of noncollinear spiral magnetic order in hexaferrites

c.f. ME effect in M-type [Tokunaga et al., PRL 105, 257201 (2010).]

Former studies on magnetism of Z-type hexaferrites

Crystal structures of 6 main types of hexaferrites

M-type	W-type	Y-type	Z-type	X-type	U-type
(Ba,Sr)Fe ₁₂ O ₁₉	(Ba,Sr) <i>M</i> e ₂ Fe ₁₆ O ₂₇	(Ba,Sr) ₂ <i>M</i> e ₂ Fe ₁₂ O ₂₂	(Ba,Sr) ₃ Me ₂ Fe ₂₄ O ₄₁	(Ba,Sr) ₂ <i>M</i> e ₂ Fe ₂₈ O ₄₆	(Ba,Sr)₄Me₂Fe ₃₆ O ₆₀
6 6, 6 2, 6 5* x=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6, 62, 66, 5 zet zet	3 3 3 3 3 3 3 3 3 3 3 3 3 3	5, 5 2, 5 5, , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 R R R R R R R R R R R R R

Experimental procedures

*Sample synthesis

Z-type (Ba,Sr)₃Co₂Fe₂₄O₄₁ & U-type (Ba,Sr)₄Co₂Fe₃₆O₆₀ studied here are polycrystalline samples prepared by the conventional solid-state reaction technique.

*Measurements

-Powder x-ray diffraction (room temperature)

-Resistivity (room temperature) -Magnetization (~10K < T < ~800 K)

-Dielectric constant (~10K < T < ~400 K) -Electric polarization (~10K < T < ~400K)

Magnetic fields were applied in a direction normal to electric fields.

→ E

Н

-Powder neutron diffraction (~10K < T < ~640K)

Enhancement of Resistivity in Hexaferrites

Evaluation of sample quality (purity, resistivity)

Sample annealed in O₂ after sintered in air shows very high resistivity and includes no impurities.

[100]-zone high-angle annular dark-field scanning TEM (HAADF-STEM) images for two hexaferrite samples

Z-type (Ba,Sr)₃*Me*₂Fe₂₄O₄₁ RSTSR*S*T*S*

Low field ME effect of Z-type Sr₃Co₂Fe₂₄O₄₁ at room temperature

2θ (degree)

Magnetoelectric effects are observed at a wide temperature ránge including room temperature.

Summary (magnetoelectric haxaferrites)

Various hexaferrite compounds were highlighted in terms of their high-temperature and low-field magnetoelectric operation.

M-type (Ba,Sr)Fe₁₂O₁₉, Y-type (Ba,Sr)₂Me₂Fe₁₂O₂₂, Z-type $(Ba,Sr)_3Me_2Fe_{24}O_{41}$, U-type $(Ba,Sr)_4Me_2Fe_{36}O_{60}$

*The ME effect appears even below several hundreds Oe and persists up to ~400 K.

*The ME effects can be originated from a transverse conical spin structure.

This result has the promise of ME device applications including non-volatile memory where information is stored as electrically-detectable & -controllable spin-helicity.

E and/or H

Right-handed spin-helicity (1)

Left-handed spin-helicity (0)

Outline of this lecture

- Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- Single crystal growth

E = 0 V/mm

- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO₂
 - Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

by scanning resonant x-ray microdiffraction with Y. Hiraoka (Osaka), Y. Tanaka (SPring8), S. Shin (SPring8)

Imaging spiral magnetic domains in multiferroics by circularly polarized X-ray

Circularly polarized x-ray diffraction study of Ba_{0.8}Sr_{1.2}Zn₂Fe₁₂O₂₂

If the fractions of the right- and left-handed spin-chiral domains are *a* and (1-*a*), respectively

Imaging spin-chiral domains in Ba_{0.5}Sr_{1.5}Zn₂Fe₁₂O₂₂ by circularly polarized X-ray

Spatial images of spin-chiral domain structure in $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$ at 68 K

Hiraoka et al., PRB 84, 064418 (2011).

*Red and blue regions correspond to either a left- or right-handed spin-chiral monodomain. *The observed domains are irregular in shape with a size on a submilimeter scale.

*There is a tendency that the domain boundaries are clamped at surface defects. *The observed domains were apparently smaller in size than those on a smooth surface.

Thermal effect on the spin-chiral domain structure in $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$

The domain structure is robust with respect to the variation of *T* and time once they are formed, but is not reproducible once the crystal is heated above T_{N} .

Outline of this lecture

- · Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- · Single crystal growth
- · Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO₃
 - · Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- ME effect in magnetically-disordered system

with Y. Yamaguchi (Osaka), T. Nakano(Osaka), Y. Nozue (Osaka)

To purse the ME coupling owing to multi-spin variables such as spin chirality and toroidal moment in magnetically-disordered systems

Magnetically-induced ferroelectricity & Vector spin chirality

By recent development of multiferroics research,

Strong correlation between spin frustration & magnetoelectric coupling has been well recognized.

Magnetoelectric effect is useful to detect

Theoretically, multi-spin variables can be nonzero even in the absence of long-range magnetic order.

Chiral spin liquid phase in helimagnets

Spin-chirality decoupling in spin-glass system

H. Kawamura, PRL 68, 3785 (2011);

F. Cinti et al., PRL 100, 057203 (2008); PRB 83, 174414 (2011).

FIG. 1 (color online). Schematic representation of Villain's conjecture. In the chiral spin liquid phase, corkscrews all turning clockwise (or all anticlockwise) with in general $\varphi_i \neq \varphi_j$. In the helical spin solid phase, same angle value φ_0 for all spins.

Figure 1. Phase diagram of the XY-like SG with an easy-plane-type uniaxial magnetic anisotropy in the uniaxial anisotropy versus the temperature plane. T_{CG} and T_{SG} represent the chiral-glass and the spin-glass transition temperatures of the fully isotropic Heisenberg system.

It is possible that ME materials are found in magnetically-disordered phases.

Spin chirality in spin glass system

Our experiments

Magnetic & dielectric properties at zero magnetic fields

Magnetic field effect on electric polarization in Ni_{0.42}Mn_{0.58}TiO₃

Finite polarization appears only in two configurations

What is the origin of the ME effect observed in $Ni_{0.42}Mn_{0.58}TiO_3$?

Proposals for possible origins

Comparison with an Ising-like spin glass system -Fe_{1-x}Mn_xTiO₃-

Antisymmetric ME effect induced by toroidal moment 2. Toroidal ordering induces ME effect H = 0c.f. Spin current model S_i a 1 p Toroidal moment TKatsura et al., PRL 95, 057205 (2005) ordered arrangement of magnetic vortice S; p_{ii} :microscopic electric dipole $\overrightarrow{e_{ii}}$:unit vector $\overrightarrow{S_i}$:spin $T \sim \Sigma_{\alpha} r_{\alpha} \times S_{\alpha}$ $\vec{p}_{ii} \propto \vec{e}_{ii} \times (\vec{S}_i \times \vec{S}_i)$ Free energy expression including tor Delaney et al. T PRL 102, 157203 (2009) term o $F = -P^{s}_{i}E_{i} - M^{s}_{i}H_{i} - \overline{T^{s}_{i}(\boldsymbol{E} \times \boldsymbol{H})_{i}} \cdots - \alpha_{ij}E_{i}H_{j} \cdots$ consider $T = (0, 0, T_{z})$ $F = -P_{i}^{s}E_{i} - M_{i}^{s}H_{i} - T_{z}(E_{x}H_{y} - E_{y}H_{x}) \cdots - \alpha_{ij}E_{i}H_{j} \cdots$ $P_{x} = -\frac{\partial F}{\partial E_{x}} = P_{x}^{s} + T_{z}H_{y} \cdots + \alpha_{xj}H_{j} \cdots \qquad P_{y} = -\frac{\partial F}{\partial E_{y}} = P_{y}^{s} - T_{z}H_{x} \cdots + \alpha_{yj}H_{j} \cdots$ off-diagonal & antisymmetric magnetoelectric effect

A possible toroidal ordering in XY spin glass system (1) XY spin glass Spin $x \to y$ $x \to$

Glassy feature in dielectric constant ϵ

Effect of ME cooling fields (E & H) on electric polarization

Electric polarization *P* monotonically increases, as cooling *E* & *H* increase.

Degree of the alignment of toroidal moments can be tuned by the ME field E×H.

The behavior may reflect the SG feature in which a resulting state of frozen spins strongly depends on the cooling condition.

Summary (ME effect in a magnetically-disordered system)

Summary

- Symmetry in crystals
- Magnetic symmetry
- Conventional magnetoelectric effect
- Single crystal growth
- Spin-spiral-driven multiferroics
 - Orthorhombic perovskite manganites RMnO₃
 - Cuprates and ferrites working at room temperature
- Observation of spin-spiral domain structure
- · ME effect in magnetically-disordered system