Measuring magnetism in ferroelectrics using neutron scattering

> *Michel Kenzelmann* Paul Scherrer Institut

Outline

- Introduction in neutron scattering
- Magnetic neutron scattering in magnetic ferroelectrics
- Determination of magnetic structures
- Symmetry properties of magnetically-induced ferroelectricity

Paul Scherrer Institute

User facilities with neutron, muon and synchrotron sources, and (hopefully) soon a free-electron laser

Neutron scattering

Structure, vibrations, magnetic order, magnetic correlations

where the atoms and what do they do? how do the magnetic moments fluctuate or order?

Advantages:

- 1) Wavelength comparable with interatomic spacings
- 2) Kinetic energy comparable with that of moving atoms in a solid
- 3) Penetrating => bulk properties are measured & sample can be contained
- 4) Weak interaction with matter aids interpretation of scattering data
- 5) Wave-vector and energy control

Nobel Prize 1994: Shull and Brockhouse

SINQ spallation neutron source

Heavy-metal target

Side view of proton current hitting target

Radiation shielding for target

Next European neutron source

- 1) Pulsed neutron source with 5 MW proton current
- 2) First neutrons planned for 2019
- 3) Supported by 17 European nations
- 4) ESS will be most powerful neutron source worldwide

Lund, Sweden

Large variety of neutron scattering instruments

Neutron powder diffractometer

Cross-section of magnetic neutron scattering

$$\boldsymbol{\mu}_n = 2\gamma \boldsymbol{\mu}_n \frac{\boldsymbol{\sigma}}{2}$$

 \sim

$$\mathbf{\hat{R}} = -2\mu_B \hat{\mathbf{s}}$$

$$\mathbf{\hat{R}} = -\operatorname{ret} \left[\frac{\boldsymbol{\mu}_e \times \mathbf{R}}{|\mathbf{R}|^3} \right] + \operatorname{transl.part}$$

Magnetic field from electron:

Neutron-electron interaction:

$$V(\mathbf{R}) = -\gamma \mu_n \hat{\boldsymbol{\sigma}} \mathbf{H}(\mathbf{R})$$

Average over neutron coordinates:

$$\langle \mathbf{k'} | V(\mathbf{R}) | \mathbf{k} \rangle = \gamma r_e \hat{\boldsymbol{\sigma}} \frac{1}{q^2} [\mathbf{q} \times [\hat{\mathbf{s}}_i e^{i\mathbf{q}\mathbf{r}_i} \times \mathbf{q}]]$$

$$\mathbf{q} = \mathbf{k'} - \mathbf{k}$$

$$\begin{array}{c} \hat{\boldsymbol{\sigma}} \\ \hat{\mathbf{q}} \\ \hat{\mathbf$$

Τ.

Onset of "classical long-range order"

- ✤ T >>J: strong fluctuations
- ✤ cooperative phase transition for T < J</p>

Example of a powder neutron pattern

Single-crystal neutron scattering

TriCS diffractometer at PSI

Magnetic excitations

Phonons

Structural and magnetic order

RITA spectrometer at PSI

Ferroelectrics that order magnetically: h-RMnO₃

- 1) ferroelectric at high T ~900K (gemoetric ferroelectricity)
- 2) Magnetism at much lower T~70K
- 3) Strong dielectric signal at spin reorientation transition

O. Vajk et al, Phys. Rev. Lett. 94, 087601 (2005).

B. Lorenz et al, Phys. Rev. Lett. 92, 087204 (2004)

Measurement of spin-waves HoMnO₃

PPPPPPPPPPPP

O. Vajk et al, Phys. Rev. Lett. 94, 087601 (2005).

- 1) well-defined excitation as a function of wave-vector and energy
- 2) Determination of spin

$$H = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_i S_i^z S_i^z$$

3) Direct o observation of spin-lattice coupling

Neutron scattering on BiFeO₃

D. Lebeugle et al, Phys. Rev. B 76, 024116 (2007).

Determination of magnetic structures

Determination of magnetic structure from diffraction experiment

$$\frac{d^2\sigma}{dEd\Omega} \propto \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha}\hat{Q}_{\beta}) S^{\alpha\beta}(Q,\omega)$$

measurements in reciprocal space

Determination of magnetic structures

$$S(\mathbf{Q}) = N \left[|F_{\perp}(\boldsymbol{\tau})|^2 \delta((\boldsymbol{\tau} - \mathbf{k}) - \mathbf{Q}) + |F_{\perp}(-\boldsymbol{\tau})|^2 \delta((\boldsymbol{\tau} + \mathbf{k}) - \mathbf{Q}) \right]$$

Magnetic Bragg peaks occur at satellite positions around Bragg peaks of the reciprocal lattice of the nuclear lattice Spin ordering in unit cell from relative intensities of magn. Bragg peaks

$$F^{\alpha}(\mathbf{Q}) = \sum_{d} \psi_{d}^{\alpha} \exp(i\mathbf{Q} \cdot \mathbf{d})$$

F(Q) are different for $\Psi_{\rm d}$ vectors possible by symmetry

Symmetry restricts what type of magnetic structures are possible

- Many parameters \rightarrow few parameters
- Symmetry identifies the physical degrees of freedom
- Determined through the symmetry of the space group and the order wave-vector (modulation of the magnetic order)

Continuous phase transition

 Landau theory of free energy

$$F(T, M) = F_0(T) + \alpha_2(T)M^2 + \alpha_4(T)M^4 + \cdots$$

- time reversal symmetry \rightarrow only even powers of M
- α_2 changes sign at transition
- Free energy is unstable for M non zero for T < T_c (M minimizes the free energy F(T):

$$M^2 \propto (T_c - T)$$

Continuous phase transition

 $F = \alpha_2(T)M^2 + \alpha_4(T)M^4 - MH + ...$

For small H the magnetization M is

$$M 2\alpha_2(T) = H \implies \alpha_2 = \frac{1}{2}\chi^{-1}$$

The coefficient, α_2 , of M² is proportional to the inverse susceptibility:

$$F = \frac{1}{2} \chi^{-1} M^2 + \dots$$

 α_2 changes sign at transition \rightarrow the susceptibility diverges at a continuous transition.

More generally: for all Fourier components:

$$F = \frac{1}{2} \sum_{q} \chi^{-1}(q) |M(q)|^2$$

Inverse susceptibility

the instability occurs at q=0

Antiferromagnet

The instability occurs at wavevector $q=\pi/a$

Wave-vector selection: incommensurate order

Incommensurate Magnet

For competing interactions, the minimum in inverse $\chi(Q)$ can be anywhere in the zone.

The minimum in inverse $\chi(Q)$ locates the wavevector of the ordered state ("wavevector selection")

In simple cases, inverse $\chi(Q)$ is given by the Fourier transform of the interactions

Easy-axis antiferromagnets

So far M was a scaler, what happens when the M is a vector?

Suppose we have vector spins with an easy axis along z.

$$F = \frac{1}{2} [T - T_c] |\vec{M}|^2 + K [M_x^2 + M_y^2] + O(M^4),$$

where K>0 is the anisotropy energy.

Here as T approaches T_c from above, only M_z becomes unstable relative to long-range order.

Several magnetic ions in the unit cell

$$S_{\alpha}(\vec{R},\vec{\tau}) = \sum_{q} s_{\alpha}(\vec{q},\vec{\tau}) \exp[-iq \bullet (\vec{R}+\vec{\tau})],$$

Define spin vector describing all spins in the unit cell:

$$s_{\alpha}(\vec{q}) = [s(\vec{q}, \vec{\tau}_1), s(\vec{q}, \vec{\tau}_2), s(\vec{q}, \vec{\tau}_3), \dots]$$

Then free energy can be written as:

$$F = \sum_{\alpha\beta\tau\rho} F_{\alpha\tau;\beta\rho}(\vec{q}) s_{\alpha}(\vec{q})^* s_{\beta}(\vec{q}).$$

One of the eigenvalue of F that becomes first zero. The susceptibility of the associated eigenvector diverges and the system orders.

Magnetic order at a second order phase transition Is described by one irreducible representation.

Recipe to determine the irreducible representations

- Determination of the ordering wave-vector (via diffractive methods)
- Determination of the symmetry elements that leave the ordering wave-vector invariant: **little group**
- Character table of little group: → determine the number and symmetry properties of the irreducible representations
- **Projector method** to find possible magnetic order parameters

MODY program does it for you, others available

Ferroelectricity in TbMnO₃

distorted perovskite structure space group Pbnm Mn³⁺ carries S=2

BaTiO₃

T. Kimura et al, Nature 426, 55 (2003)

ferroelectric below 27K direct coupling to magnetic field observed

T-dependence of magnetic order parameter

M. Kenzelmann et al, Phys. Rev. Lett. **95**, 087206 (2005)

- No lock-in transition at T=28K
- Development of higher-order peak below T=28K
- Onset of ferroelectricity coincides with strengthening of (0,1-q,1)
 Bragg peak
- Development of Tb order below 8K

Space group of TbMnO₃

Pbnm (different setting: $abc \rightarrow bca$)

 $\{1, \overline{1}, 2_x, 2_y, 2_z, m_{xy}, m_{xz}, m_{yz}\}$ 2 (1/2,0,0) 2 (0,1/2,0) 2 (0,0,1/2) $n(x, \frac{1}{4}, z)$ (x, 1/4, 0) $(\frac{1}{4}, y, \frac{1}{4})$ (0,0,z) m (x,y, 1⁄4) b (¼,y,z)

Little group for magnetic order in TbMnO₃

 $Mn_{1}: \mathbf{r} = (0.50, 0.00, 0.00)$ $Mn_{2}: \mathbf{r} = (0.00, 0.50, 0.50)$ $Mn_{3}: \mathbf{r} = (0.50, 0.00, 0.50)$ $Mn_{4}: \mathbf{r} = (0.00, 0.50, 0.00)$ $Tb_{1}: \mathbf{r} = (0.985, 0.08, 0.25)$ $Tb_{2}: \mathbf{r} = (0.515, 0.58, 0.25)$ $Tb_{3}: \mathbf{r} = (0.015, 0.92, 0.75)$ $Tb_{4}: \mathbf{r} = (0.485, 0.42, 0.75)$

 $\begin{array}{l} 2_{y} \operatorname{Mn}_{1} \rightarrow \operatorname{Mn}_{2} \\ m_{xy} \operatorname{Mn}_{1} \rightarrow \operatorname{Mn}_{3} \\ m_{yz} \operatorname{Mn}_{1} \rightarrow \operatorname{Mn}_{4} \end{array}$

Ordering wave-vector: $\mathbf{Q} = (0,q,0)$

Little group
$$G_{\mathbf{k}}$$
: 1, 2_y, m_{xy} , m_{yz}
 $\stackrel{2 (0,1/2,0)}{(\sqrt{4},y,\sqrt{4})} \xrightarrow{\mathrm{m}(\mathbf{x},y,\sqrt{4})} \xrightarrow{\mathrm{b}(\sqrt{4},y,z)}$

 $2_y \text{ Tb}_1 \rightarrow \text{ Tb}_2$ m_{xy} Tb₁ → Tb₁ m_{yz} Tb₁ → Tb₂

$$\rightarrow$$
 two orbits of Tb ions

Basis vectors from the projector method

	1	2_y	m_{xy}	m_{yz}
Γ^1	1	α	1	α
Γ^2	1	α	-1	- <i>α</i>
Γ^3	1	- <i>α</i>	1	- α
Γ^4	1	- α	-1	α

$\phi^{\lambda} = \sum_{g} \chi^{\lambda}(g) g(\phi)$

$1 \text{ Mn}_1 \rightarrow \text{Mn}_1$	1 (m _x ,m
$2_y \operatorname{Mn}_1 \rightarrow \operatorname{Mn}_2$	2 _y (m _x ,m
$\mathrm{m_{xy}~Mn_{1}} \not \rightarrow \mathrm{Mn_{3}}$	m _{xy} (m _x ,m
$\mathrm{m_{yz}~Mn_1} { \rightarrow \mathrm{Mn_4}}$	m _{yz} (m _x ,m

1 (m _x ,m _y ,m _z)	\rightarrow	(m _{x'}	m _y ,	m _z)
---	---------------	-------------------	------------------	------------------

- $2_{y} (m_{x'}m_{y'}m_{z}) \rightarrow (-m_{x'} m_{y'}-m_{z})$
- $m_{xy} (m_{x'}m_{y'}m_z) \rightarrow (-m_{x'}-m_{y'}m_z)$

 $m_{yz} (m_{x'}m_{y'}m_z) \rightarrow (m_{x'}-m_{y'}-m_z)$

	Mn_1	Mn_2	Mn_3	Mn_4
	m_x^1	$-\alpha m_x^1$	$-m_x^1$	αm_x^1
ψ_1	m_y^1	αm_y^1	$-m_y^1$	$-\alpha m_y^1$
	m_z^1	$-\alpha m_z^1$	m_z^1	$-\alpha m_z^1$
	m_x^2	$-\alpha m_x^2$	m_x^2	$-\alpha m_x^2$
ψ_2	m_y^2	αm_y^2	m_y^2	αm_y^2
	m_z^2	$-\alpha m_z^2$	$-m_{z}^{2}$	αm_z^2
	m_x^3	αm_x^3	$-m_{x}^{3}$	$-\alpha m_x^3$
ψ_3	m_y^3	$-\alpha m_y^3$	$-m_{y}^{3}$	αm_y^3
	m_z^3	αm_z^3	m_z^3	αm_z^3
	m_x^4	αm_x^4	m_x^4	αm_x^4
ψ_4	m_y^4	$-\alpha m_y^4$	m_y^4	$-\alpha m_y^4$
	m_z^4	αm_z^4	$-m_{z}^{4}$	$-\alpha m_z^4$

	Tb_1	Tb_2	Tb_3	Tb_4
	0	0	0	0
ψ_1	0	0	0	0
	M_z^1	αM_z^1	N_z^1	αN_z^1
	M_x^2	αM_x^2	N_x^2	αN_x^2
ψ_2	M_y^2	$-\alpha M_y^2$	N_y^2	$-\alpha N_y^2$
	0	0	0	0
	0	0	0	0
ψ_3	0	0	0	0
	M_z^3	$-\alpha M_z^3$	N_z^3	$-\alpha N_z^3$
	M_x^4	$-\alpha M_x^4$	N_x^4	$-\alpha N_x^4$
ψ_4	M_y^4	αM_y^4	N_y^4	αN_y^4
	0	0	0	0

$$\frac{0.5}{9} \underbrace{0.5}_{0} \underbrace{0.5}_{0} \underbrace{0.5}_{-1} \underbrace{0.5}_{-1} \underbrace{0.5}_{0} \underbrace{0.5}_{-1} \underbrace{0.5}_{-$$

spin-density wave Γ_3

а

$$\mathbf{m}_{3}^{\text{Mn}} = [0.0(8), 2.90(5), 0.0(5)]\mu_{B}$$
$$\mathbf{m}_{3}^{\text{Tb}} = [0, 0, 0.0(4)]\mu_{B}$$

Fitting of the data: χ^2 maps

	Mn_1	Mn_2	Mn_3	Mn_4
	m_x^1	$-\alpha m_x^1$	$-m_x^1$	αm_x^1
ψ_1	m_y^1	αm_y^1	$-m_y^1$	$-\alpha m_y^1$
	m_z^1	$-\alpha m_z^1$	m_z^1	$-\alpha m_z^1$
	m_x^2	$-\alpha m_x^2$	m_x^2	$-\alpha m_x^2$
ψ_2	m_y^2	αm_y^2	m_y^2	αm_y^2
	m_z^2	$-\alpha m_z^2$	$-m_{z}^{2}$	αm_z^2
	m_x^3	αm_x^3	$-m_{x}^{3}$	$-\alpha m_x^3$
ψ_3	m_y^3	$-\alpha m_y^3$	$-m_{y}^{3}$	αm_y^3
	m_z^3	αm_z^3	m_z^3	αm_z^3
	m_x^4	αm_x^4	m_x^4	αm_x^4
ψ_4	m_y^4	$-\alpha m_y^4$	m_y^4	$-\alpha m_y^4$
	m_z^4	αm_z^4	$-m_{z}^{4}$	$-\alpha m_z^4$

$$\mathbf{m}_{3}^{\text{Mn}} = (0.0(5), 3.9(1), 0.0(7))\mu_{B}$$
$$\mathbf{m}_{3}^{\text{Tb}} = (0, 0, 0(1))\mu_{B}$$
$$\mathbf{m}_{2}^{\text{Mn}} = (0.0(1), 0.0(8), 2.8(1))\mu_{B}$$
$$\mathbf{m}_{2}^{\text{Tb}} = (1.2(1), 0(1), 0)\mu_{B}$$

Magnetic structure of TbMnO₃

M. Kenzelmann et al, Phys. Rev. Lett. 95, 087206 (2005)

Longitudinally-modulated spin phase at high temperature, low-temperature spiral phase break inversion symmetry and allows an electric polarization

Magnetic structure of TbMnO₃

$$\mathcal{H} = \sum_{\alpha\beta\gamma,\mathbf{q}} a_{\alpha\beta\gamma}(\mathbf{q}) M_{\alpha}(\mathbf{q}) M_{\beta}(-\mathbf{q}) P_{\gamma}(0) \ .$$

Trilinear Coupling of M and P is allowed

P has to transform as $M_{\alpha}(q) M_{\beta}(-q)$

	1	2_y	m_{xy}	m_{yz}
Γ_1	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	1	-1
Γ_4	1	-1	-1	1

Electric polarization is only allowed along the c-direction as observed (P has to be even under 1 & m_{yz} and odd under 2_y & m_{xy})

Not all spiral magnets are ferroelectric !

Example: Cs₂CuCl₄ - 2D triangular quantum magnet

R. Coldea et al, J. Phys.: Condensed Matter 8, 7473 (1996)

- One phase transition as a function of temperature
- Magnetic structure is described by one irreducible representation
- Counter-rotating spirals
- Cannot lead to ferroelectricity

$$\mathcal{H} = \sum_{\alpha\beta\gamma,\mathbf{q}} a_{\alpha\beta\gamma}(\mathbf{q}) M_{\alpha}(\mathbf{q}) M_{\beta}(-\mathbf{q}) P_{\gamma}(0) \; .$$

Summary

- Introduction in neutron scattering
- Magnetic neutron scattering in magnetic ferroelectrics
- Determination of magnetic structures
- Symmetry properties of magnetically-induced ferroelectricity